STATISTICAL THEORY OF THE NONUNIFORM TURBULENCE
OF AN INCOMPRESSIBLE FLUID
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The nonuniform turbulence problem is treated by a statistical approach based on the use of

a finite number of equations for the higher-order single-point correlations. Additional dif-
ferential equations are derived for the Munknown™ moments in the single-point correlation
equations, The equations are closed by means of approximate expressions for the aniso-
tropic two-point correlation tensors for near points. A closed system of seven tensorial dif-
ferential equations is given, describing the variation of the fundamental characteristics of
nonuniform turbulence.

Attempts have been made recently [1] to formulate a theory of nonuniform turbuience on the basis of
a finite number of equations for the higher-order correlations, This approach to the problem has undoubt-
edly received its fullest treatment in [2-13]. In the latter, the equations for the single-point correlations
are closed by the introduction of certain phenomenological hypotheses based on the formal analogy between
turbulent and molecular momentum transfer. The larger the number of correlation equations analyzed in
this case, the larger must be the number of hypotheses, so that it becomes necessary to determine a large
number of dimensionless empirical coefficients,

In the present article we endeavor to set forth a statistical description of the dynamics of nonuniform
turbulence in an incompressible fluid on the basis of the equations for the single- and two-point correlations
of the fluctuation variables. The fundamental system of differential equations for the velocity correlations
is closed, not by the use of phenomenological hypotheses, but by means of additional differential equations
for the "unknown™ correlations and expressions for the anisotropic two-point correlation tensors for closely
spaced points,

The fundamental equations are as follows:

incompressibility equations:
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triple single-point correlation equations [7]:
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We adopt the following hypothesis of Millionshchikov [14] as the fundamental hypothesis limiting the
number of correlation equations: '

Uglh g = Uglh; Uplhy ~+ Ugthy, Ugthy + tilly U, (5)

It is well known [1] that hypothesis (5) is strictiy valid only for fields having a Gaussian density function,
However, as shown by numerous experimental data, it can be regarded as fully satisfactory for almost-
isotropic flows [15-19] and for strongly nonuniform flows [20-23].

Despite the fact that hypothesis (5) can be used to produce a situation in which the number of velocity
correlations and the number of equations describing them are the same, the inclusion in the nth-order cor-
relation equations of equal-order correlations containing derivatives of the velocities and pressure [the
underscored terms in Eqs. (3)-(4)] prevents the closure of this fundamental system of equations.

For the investigation of the above-indicated unknown correlations it is advisable to represent them
as functions of the two-point correlations, introducing the new coordinate system [24]
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which reflects the dependence of the two-point correlations on the distance between two given points A and
B and on the positions of those points in the flow field, Then the correlation characterizing the dissipation

of fluctuation kinetic energy in Eq. {3) can be written in the form
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We now derive a differential equation describing the variation of the tensor (A;;Ei_ﬁ.')o in the nonuniform
turbulence field, Our starting point is the dynamical equation for the two-point velocity correlation in non-
uniform turbulence; in the coordinates (6) this equation takes the form [24]
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Performing the operation [AL‘( )lp on Eq. (8) and carrying out some simple transformations associated
with the introduction of the new coordinate system (6), we obtain the equation
%3 1/, oU,— o, — U; (v —r
_(Ax o ut; 4 A, Lowu; ) -+ e (Acuhuj)o

—— A uyt
01: ( Cuzu])o-{" 4 2 axh k

;. . — o*U; 0 — U, ( d ——)
L{Avuu,) — —— — Ul J TR
+ 0x, ( e k)o axhaxl( o ot )o.—i—axkaxz 95 ke

1342



(5 ) l*l()AwL
aUk( & [(

] ) ) u —é—uiuku})}
0x; \ 05,08, 0 0
d d -
! A 7 M As pu;
e )|+ pﬁmﬁmw
g —— 1 d 5}
(-2) w7 - o ()
( Ox; )AB ; L 0 [ og; at

10
— L v [ (A as]y — 2v [ ()], = 0. (9)

&

+2

The correlations containing pressure fluctuations in Eq. (3) may be represented as follows in the co-
ordinate system (6):
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We next derive differential equations for the correlation (1 /p)ﬁ_l;. entering into (10). As we know [1], the
pressure fluctuations satisfy an equation of the Poisson type:
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Writing this equation at point A, multiplying by u , and averaging, we obtain
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Transforming to the new variables (6), we rewrite the latter equation in the form

1 — . 3 9 v,
L [ = (Ag)as pu, Ay puy) — (—) (—pu,)] =—2-n
p| 4 AB 3

Ox;, ag, ax,
1 0 . a . 1 o ) -
X | — =] talt,— | =t} | —— - T
[ 2 ( axm)AB (aCm ) 4 adexn /
. J o %
—+ () i, ) =5 () (i) 5 ) | (12)
2 \ox,/ a5\ 9, 2 \ox, s\ at, ") \05,9L,

Then we consider the unknown terms of the triple correlation equation (4), The correlations charac-
terizing the dissipation of turbulence due to viscosity may be represented as follows in the variables (6):
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and the correlations containing pressure fluctuations may be written in the form
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Now we derive a differential eguation for the correlation (1 /p)‘purus, To do so we make use of the
Poisson equation (11) at point A, Multiplying this equation by u{,ué and averaging, we obtain
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Transforming to the new variables (6), we rewrite this equation for ¢ = 0 in the form
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With (5) taken into account, Equations (1)-(4), (9), and {12)-(14) form a system of equations describing
the behavior of the fundamental characteristics of nonuniform turbulence, These equations contain a series
of unknown terms, which represent differential operators of the two-point correlations at the point ¢ = 0.
Consequently, these terms can be determined if the corresponding two-point correlations for near points
are known, We adopt as our criterion of ™earness™ for two points the microscales of the corresponding
correlations., Hence, if the correlation tensors are represented as expansions in power series on the di-
mensionless (referred to the appropriate microscale) coordinate ¢, then for closely spaced points we can
limit the expansions to the first few terms. In the region between two near points the turbulence is assumed
to be vniform., Thus, with the use of the two-point correlation tensors for two near points, in order to close
the nonuniform turbulence equations with respect to the terms representing differential operators of the
two-point correlations tensors we can invoke the concept of local uniformity, i.e., assume at any point of
the flow field that the correlation tensors in the given terms are homogeneous (on the coordinate g), but
vary in the space xy.,

The fundamental conditions that must be satisfied by the anisotropic two-point correlation tensors are
as follows:

coincidence with the corresponding single-point correlations at ¢ = 0, i.e.,

(uiu]- ceethy)y = Uity U, (15)
coincidence with the corresponding isotropic tensors under isotropy, i.e.,
(wtty ) * = Qp..omy (16)
coincidence of the differential operators of the anisotropic correlation tensors with respect to ¢ at

¢ = 0 and with respect to the isotropy condition with the corresponding operators of the isotropic tensors
atg=0, i,e.,
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It follows from the general theory of tensor invariants [25] that an nth-rank isotropic correlation
tensor can be represented as a linear combination of certain (defining) tensors of the same rank (g; for the
first-rank correlation tensor, g j, 0ii for the second-rank correlation tensor, GiLitko Gijtks OikEyr Oqkbi for
the third rank tensor, etc,), whére the coefficients of these tensors are scalar functions of g. Accord-
ingly, conditions (15) and (16) can be satisfied if the number of above-indicated defining tensors is
complemented by the corresponding single-point correlations, Thus, proceeding from conditions (15) and
(16), we represent the approximate expressions for the anisotropic correlation tensors as a linear combina-
tion of tensors which are the defining tensors for the corresponding isotropic tensors and single-point cor-

relations*:
e, = A (L)L + B(E) oy,

it = A@GG + B (D8s + ¢ (@i, (18)
uppt, = AL, 4 B(ED8: 6 + ¢ (B (8455 + 8;u8:) + D (B) wa ity
ete,

*A similar, though somewhat more complex scheme for the formation of the anisotropic correlation tensors
has been proposed by Chou [7]. Here also the notion of axisymmetric turbulence can be used [26, 27].
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Tnasmuch as the expressions for the correlation tensors are needed only at near points, we expand the
coefficients in (18) in a multiple Taylor series:

, oK I ( FK )
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Then, using condition {15), we rewrite the tensors (18) in the form
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Owing to the uniformity of the turbulence in the region between the two given closely spaced points,

the correlation tensors (19) must satisfy the invariance conditions under reflection from any point in space
and under interchanging of the two points, i.e., [24],

G, (6) = —Cu, (¥), 154, (5) = gy (D),

wti g, (0) = — 0 W, (©).

These conditions imply that cuk, ulu uk, and the other tensors of odd rank contain only odd powers of
¢, while ulu and the other tensors of even rank contain only even powers of ¢, Moreover, the single-point
correlations of odd order are equal to zero, Equations {19) can therefore be rewritten in the form
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The following relations are implications of expressions (20)-{21):

Ageu) —. 0 (—umu,;) =0, (22)

(Agcul), =0, o, .

63 aZ e
(—— umu,’l) =0, (— Upplinldy ) =0.
at,0%,0¢, o az, g, 0
We now give a more detailed analysis of the even- and odd-rank anisotropic two-point correlation tensor for
near points,

I the second-rank tensor (21), written out to fourth powers of ¢, satisfies the incb’mpressibﬂity con-
dition
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after some straightforward manipulations we obtain the relations
bmn = _(4a06mn + CmsRsn)r

Banjr=—3 (3!aj15mn e YmﬂsRsn) .

Due to the symmetry of the coefficients byynand anj I underthe permutation of indices m and n we obtain
Cmn = Coﬁmn’ VYmits = ?jlams'
Consequently, the given tensor can be rewritten in the form

2
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From the expression for the second-rank isotropic correlation tensor for near points we infer
N = () * 1 62 » 1
(A:Qi p)y =— 15120 {*} ,where o = — E—(—ar—zf)ﬂ 8 0 = Tﬁ .

Therefore, bearing condition (17) in mind, we can introduce the following definition of the second-order
tensor of microscales of anisotropic two-point correlations:

@_ 1 (s
ofh 5 (B i), (24)

If the tensor (23) satisfies condition (24), we obtain the following relations for the scalar coefficients of the
second powers of g:

— 1 1 i @ ;

Gy = 9 Pl(zrg = 3 9223 8p— 5 Ps,2s Co (R, — 83, (25)

in which ao = ao/p( )s co = Co/p(z) are dimensionless scalar coefficients. It is interesting to note that, ac-

cording to (7) a.nd éxpression (2 5), the digsipative function in the double correlation equation (3) has the form
Ou; Ou; 1

: — 2 —
2 0xl ) a'x] - _2—VAx”i”i - Tqu (@ —B)pEisy, + 2vap Y uu, (26)
3 k

where o =— 3c,.

Comparing (26) with the analogous expressions derived by Chou in [7] and Rotta in [8], we perceive
at once that the latter are applicable only in uniform turbulence, In the present study it is not necessary to
treat expression (26) as an approximation [containing the unknown coefficient o] of the correlation (7), be—
cause we have the differential equation (9) for the tensor (Agu s )0 We use expression (25) to determine co
Thus, since (25) holds for any fixed indices i = ¢ and k = g, the coefficient ¢ can be represented in the form

: ! ov) 1 (27
=5 — 8¢p — ; .
a() ( 3 A ) R(p\b - 5rpq;

By analogy with (24), in accordance with condition (17) we readily deduce the relation

J— 35
(AAusthy), = — - IR (28)
where
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If the tensor (23) satisfies condition (28), we can derive the following relation between the coefficients

amp and ymn:
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Bearing in mind the expressions obtained above for the coefficients, we represent the second-rank
correlation tensor (23) in the form

2 1 - ' 1 3 13
Uglly, = 'g_ {Rik + 9 & [CiCk_ 2r'8y, + o (F*Ryp — Rmngmgnaih)] -+ o ( Sl — ?f%ik )([ 3 I&

1 (81 1 e 5 (@ 4 1 , 1 2R _R.
+ 35 ( 8 Vss 3 anRmn)] r 8 <7lmﬂ + TYSsRmn) ngn ) ha 41 ancmcn (f Rih RlleCl‘Sih) +. } (29)
where 50 is determined by expression (27). It is easily verified that (29) coincides with Q k under isotropy,

Using expression (29), we represent the "unknown® functions of the second-rank tenéor in Egs, (9) in
the form

*  — Vo g
oWl | = —— sis P s
( oL, ’)o g TP
(30)
Ff?li."t = 6im6jn + Ginajm— 46mn6ij + 2(2) (Rijﬁmn - Rmnéif)'
We next consider the third-rank tensor, ¥ the tensor (21) satisfies the incompressibility condition
0 —
E: uiujuk = O,
we can derive the following relations for the coefficients:
2 2
bO = TCO’ bm716ij = ? (saoami(sjn + ijfsin + Cmi(sin + cmnaij)'
Taking these relations into account, we write the tensor (21) in the form
T~ g 2
ul, = 3,3 { € ( b+ 50 — e £idi; )
1 I 1 .
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From the isotropic triple correlation expression we obtain [24]

a - *
(52 ), =35 (@) ot}
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where

Consequently, bearing condition (17) in mind, we define the third-order tensor of microscales of anisotropic
correlations:

o) = — AV 3 (j— A (32)
108 \og, T
If {31) satisfies condition (32), we obtain
5 3 3 5 o
Cpm = — ——{ 3Bpin— 130806, |, €=~ —— 5k
mn 8 ( p » p i) mﬂ) CSS 2 p >
Also, we can readily show that*
CO = SVL)? (__Q._ uiuku]’e — O_
10¢% \ 0%, 0

#It can be shown analogously that any two-point correlation tensor of odd rank does not contain first powers
of ¢,
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Thus, the expression for the third-rank anisotropic correlation tensor for near points is written in
the form

; ¢ 5 1 1
Uiy, = 35 e {(35 P bl — 13p8012) [T(Ciﬁm 4 §;6y) — = 8.8 ]
1
—— 135 (Pitmls + Dimilnly) —-260838,8,10, + -« } : (33)

Using expression (33), we represent the Munknown" functions of the third-rank tensor in Egs. (9) and (12)
in the formx*

0 — ; 70
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? & , 35 y
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0 —\ .
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We estimate the unknown function (Atpu}ué)o appearing in Eq, (14) for uniform turbulence:

1 T INTRY az T 7
-—p— (Ag pur us)ﬂ = (m‘umunurus/)o . (37)
We express the second-rank tensor of triple-correlation microscales ,0(13)j andthe tensor lgz)j in terms of

’ k

the tensor of double-correlation microscales p?)j, for which we have a descriptive differential equation, It

can be shown that the following relations hold for isotropy:

1

LI == SUR)T ol (o)

(38)

’

* 1 * *
oy = — S*pl (o)

in which $% = (uy/0%y)3/[(8uy/0%,)%1%/2 is the asymmetry coefficient of the density function for the proba-
bility of the velocity derivatives [2] and S} = 2 (@%uy/6x%)? /l(uy/9x,)%1%/2 is a dimensionless coefficient
composed of mixed moments, i.e,, the first and second derivatives of the velocity fluctuations [28].

Bearing in mind condition (17) and relation (38), we obtain for anisotropy

1
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R SR S NG Y GNCA
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Taking relations (5), (7), (10); (13), (22), (24), (28), (30), and (34)-(39) into account, we write Eqgs. (3),
{4), (9), (12), and (14) in the form7

U u, 1

4 — 0o —  — U, — .
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*The left-hand side of (35) is obtained by differentiation of (12) with respect to & atg=0.
tWe make use of the obvious relation
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The foregoing equations in combination with Eqs, (1)-(2) form a closed system of equations describing
the dynamics of nonuniform turbulence, This system includes two statistical coefficients, S and S, » which

are directly measurable statistical characteristics of the velocity fluctuation field, The indicated coeffi-
cients have been investigated in adequate detail both theoretically and experimentally for the isotropic case
[28-31]. The remarkable property of these coefficients is their conservatism under variation of the turbu-
lent Reynolds number (for R* > 100), whereby the coefficients may be regarded as universal constants (S*
~ ~0.4; S§ =0.6). The conservatism of the asymmetry coefficient with respect to the turbulent Reynolds
number (for R, > 150, corresponding to a value of the universal coordinate x,vx/v ~ 80) has been demon-
strated experimentally for nonuniform turbulence [23], where the characteristic S varies between the limits
—0.3 to —0.4, depending on the average-flow Reynolds number, Consequently, the values of S determined
for isotropy and anisotropy practically coincide. Insofar as the authors are aware, the coefficient S, has
never been measured for nonuniform turbulence, Therefore, the approximate value of this coefficient is
Sy = 0.6, as determined "theoretically™ by means of the Heisenberg hypothesis on the spectral transfer of

energy and as confirmed experimentally [28].

NOTATION
X4 are the rectangular coordinates (i =1, 2, 3);
p is the kinematic viscosity;
T is the time;
o is the density;
Ay is the Laplace operator on the variable x;
Ui is the average flow velocity;
ug is the velocity fluctuation;
P is the average pressure;
D is the pressure fluctuation;
(U)A fluctuation at point A;
(up =y is the fluctuation at point B;
[F©)lg is the function evaluated at the point ¢ = 0;
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c is the scalar substance;
= (yyy )1/ 2,
r2 = gzl,
7 = {eH1/2;
L is the differential operator symbol;
is the Laplace operator on the variable g;
Pkc = @)/ Qqms;
Ryj = 3(ujuy) /o
Sjjk = 3v3(ujiju) /¢’  are single-point correlation coefficients;
(£)* — is the symbol for a function in the case of isotropy;

f(r) = uI.uI./u is the longitudinal double correlation coefficient;
h(r) = Ut/ @3/ is the triple correlation coefficient;
= t . ) »
g \/T]gv(p (2))2 /2 %s he transverse scale of isotropic turbulence;
R, " "1"Vss is the turbulent Reynolds number;

Rp=vx= VTw/p is the dynamic velocity,
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